032-044 Dahms
نویسنده
چکیده
Introduction It is nearly 30 years ago that the International Commission on Microbiological Specifications for Foods (ICMSF) provided urgently needed guidance on the use of sampling plans and microbiological criteria for foods in international trade. With publications like “Microorganisms in Foods 2: Sampling for Microbiological Analysis: Principles and Specific Applications” (1) and now “Microorganisms in Foods 7: Microbiological Testing in Food Safety Management” (2) ICMSF introduced concepts of probability and sampling into microbiological criteria and developed a scheme for selection of cases and attributes plans in order to establish criteria for food lot acceptance. Dependent on the conditions in which food is expected to be handled and consumed in the usual course of events and on the degree of concern relative to food utility and health hazard, 15 cases have been distinguished by ICMSF that require increasing stringency of acceptance sampling. Two general types of sampling plans, attributes sampling plans and variables sampling plans, are used in microbiological testing to make decisions concerning the safety or quality of foods. Attributes plans are used to evaluate qualitative data (presence-absence) or quantitative data that have been grouped (e.g., <10 cfu, 10 to 100 cfu, >100 cfu), whereas variables plans evaluate non-grouped quantitative data. However, despite their wide use and adoption, microbiological criteria and sampling plans are not fully understood, especially with regard to their statistical background, and in relation to other risk management approaches such as HACCP or Food Safety Objectives. This paper gives an overview on the design of sampling plans forming part of microbiological criteria for foods and on characteristics that determine their reliability and performance. Lectures
منابع مشابه
On learning optimized reaction diffusion processes for effective image restoration
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 1...
متن کاملOnline Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network Supplementary Material
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 1...
متن کاملSentiment analysis of IMDb movie reviews Machine learning ( 198 : 536 ) - Sring 2015 Rutgers University
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 1...
متن کاملSparse Estimation of Module Gaussian Graphical Models with Applications to Cancer Systems Biology
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 1...
متن کاملContext Aware Online Adaptation of Activity Recognition Models
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 1...
متن کامل